Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization.
نویسندگان
چکیده
Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes, and Glrx overexpression inhibits VEGF-induced EC migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx-overexpressing EC from Glrx transgenic (TG) mice showed impaired migration and network formation and secreted higher levels of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared with wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Noncanonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC and enhanced NF-κB activity, which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-κB-dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt explains part of the mechanism of redox-regulated VEGF signaling.
منابع مشابه
Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway.
S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear fact...
متن کاملVascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms.
BACKGROUND New revascularization therapies are urgently needed for patients with severe coronary heart disease who lack conventional treatment options. METHODS AND RESULTS We describe a new proangiogenic approach for these no-option patients using adenoviral (Ad) intramyocardial vascular endothelial growth factor (VEGF)-B186 gene transfer, which induces myocardium-specific angiogenesis and ar...
متن کاملSoluble ST2 is regulated by p75 neurotrophin receptor and predicts mortality in diabetic patients with critical limb ischemia.
OBJECTIVE The p75 neurotrophin receptor (p75(NTR)) contributes to diabetes mellitus-induced defective postischemic neovascularization. The interleukin-33 receptor ST2 is expressed as transmembrane (ST2L) and soluble (sST2) isoforms. Here, we studied the following: (1) the impact of p75(NTR) in the healing of ischemic and diabetic calf wounds; (2) the link between p75(NTR) and ST2; and (3) circu...
متن کاملImpaired Angiogenesis Following Hindlimb Ischemia in Type 2 Diabetes Mellitus Differential Regulation of Vascular Endothelial Growth Factor Receptor 1 and Soluble VEGFR-1
Deficient angiogenesis following ischemia may contribute to worse outcomes of peripheral arterial disease in patients with diabetes mellitus (DM). Vascular endothelial growth factor (VEGF) and its receptors promote angiogenesis. We hypothesized that in peripheral arterial disease, maladaptive changes in VEGF ligand/receptor expression could account for impaired angiogenesis in DM. Skeletal musc...
متن کاملImpaired Angiogenesis After Hindlimb Ischemia in Type 2 Diabetes Mellitus
Deficient angiogenesis after ischemia may contribute to worse outcomes of peripheral arterial disease in patients with diabetes mellitus (DM). Vascular endothelial growth factor (VEGF) and its receptors promote angiogenesis. We hypothesized that in peripheral arterial disease, maladaptive changes in VEGF ligand/receptor expression could account for impaired angiogenesis in DM. Skeletal muscle f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 289 12 شماره
صفحات -
تاریخ انتشار 2014